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It has been noted a long time ago that a term of the form ��e2 /2�h�B ·E may be added to the standard
Maxwell Lagrangian without modifying the familiar laws of electricity and magnetism. � is known to particle
physicists as the “axion” field and whether or not it has a nonzero expectation value in vacuum remains a
fundamental open question of the standard model. A key manifestation of the axion term is the Witten effect:
a unit magnetic monopole placed inside a medium with ��0 is predicted to bind a �generally fractional�
electric charge −e�� /2�+n� with n integer. Here we conduct a test of the Witten effect based on the recently
established fact that the axion term with �=� emerges naturally in the description of the electromagnetic
response of a class of crystalline solids called topological insulators—materials distinguished by strong spin-
orbit coupling and nontrivial band structures. Using a simple physical model for a topological insulator we
demonstrate the existence of a fractional charge bound to a monopole by an explicit numerical calculation. We
also propose a scheme for generating an “artificial” magnetic monopole in a topological insulator film that may
be used to facilitate an experimental test of Witten’s prediction.
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I. AXIONS

The idea of the axion was introduced in 1977 by Peccei
and Quinn1 as a means to solve what is known as the “strong
charge-parity �CP� problem” in the physics of strong interac-
tions. The strong CP problem, the details of which are quite
subtle, has to do with the vacuum structure of quantum chro-
modynamics. In simple physical terms it can be stated as a
question: why is the electric dipole moment of the neutron
�currently unobserved� so small? The standard model pre-
dicts a value for the neutron dipole moment �dn�
�10−16�e cm, with � of order unity, that should readily be
measurable. Peccei-Quinn’s solution promotes � to a dy-
namical field describing a new elementary particle, the ax-
ion, whose vacuum expectation value has relaxed to a very
small value, explaining the smallness of �dn�. The actual
value of �, and the validity of the Peccei-Quinn solution and
its variants2,3 remain open questions of considerable impor-
tance to fundamental physics. The axion is also believed to
be a viable candidate for the elusive dark matter that com-
prises the majority of matter in our universe4 and is subject
to active experimental searches.5,6

In a remarkable development axion electrodynamics has
recently emerged as a key tool in the description of crystal-
line solids called strong topological insulators �STIs�. These
three-dimensional �3D� time-reversal invariant �TRI� materi-
als possess anomalous band structures characterized by a
Z2-valued topological invariant.7,8 This invariant, called �0,
counts the number of topologically protected gapless surface
states �modulo 2�. A nonzero invariant means that the surface
of such an insulator will be metallic. This behavior has been
predicted to occur9,10 and subsequently experimentally
discovered11–13 in several three-dimensional solids such as
Bi1−xSbx alloys, and Bi2Se3 and Bi2Te3 crystals. More re-
cently it has been realized,14,15 remarkably, that the electro-
magnetic response of a STI is characterized by the axion
term

�Laxion = �� e2

2�h
�B · E �1�

with �=�, the only nonzero value permitted by the time-
reversal symmetry. When the time-reversal symmetry is bro-
ken, e.g., in a crystal showing weak magnetism, � can ac-
quire an arbitrary value. Fluctuations in the magnetic order
parameter then act as a dynamical axion field and can be
thought of as emergent axion particles.16 Thus, aside from
possible practical applications, crystalline solids with topo-
logically nontrivial band structures have the potential to pro-
vide tabletop laboratories for the testing and exploration of
fundamental physical paradigms.

A fundamental property of the axion medium is the Wit-
ten effect:17 in the quantum theory, a magnetic monopole of
unit strength �i.e., projecting magnetic flux �0=hc /e� im-
mersed in an axion medium must carry electric charge
−e�� /2�+n� with n integer. This effect, although theoreti-
cally well established, has never been experimentally tested
because until now both a suitable axion medium and the
means to produce a magnetic monopole have been lacking.
In this study we demonstrate how the connection between
the axion response14,15 and strong topological insulators7–13

may serve to overcome both obstacles. We remark that a
one-dimensional realization of the Witten effect in antiferro-
magnetic spin chains was proposed a long time ago.18 Here
we furnish a concrete physical example of the Witten effect
in 3D by modeling a STI with a magnetic monopole inserted
in its bulk. We show that the monopole binds a fractional
charge �e /2 consistent with Witten’s prediction.17 We then
discuss possible ways to overcome the second obstacle by
creating an emergent magnetic monopole in a topological
insulator. This can be achieved by exploiting the degrees of
freedom associated with a vortex in the exciton condensate
that may emerge in a thin-film topological insulator under
external bias.19 We conclude that the prospects for experi-
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mental verification of the Witten effect in a tabletop experi-
ment using a STI appear promising.

II. MONOPOLE AND THE WITTEN EFFECT

We start with a brief overview of the Witten effect. Al-
though the effect is quantum mechanical in nature its essence
can be understood by studying the classical Maxwell’s equa-
tions modified in the presence of �Laxion. The axion term
revises both Gauss’ law and Ampère’s law by adding extra
source terms20

� · E = � −
	

4�2 � � · B , �2�

� 
 B =
�E

�t
+ j +

	

4�2��� 
 E +
��

�t
B� , �3�

where 	=e2 /�c is the fine structure constant, and � and j are
the electric charge density and current, respectively. We ob-
serve that for uniform, constant �, Eqs. �2� and �3� revert to
the familiar Maxwell’s equations, consistent with the notion
that �Laxion can be written as a total derivative in this case.
An important related property20 is the periodicity under �
→�+2�n of the axion action Saxion, implying that � can be
chosen from the interval �0,2��.

Now consider a unit monopole, � ·B=�0��r�, placed at
the origin, in a medium initially characterized by �=0. We
wish to understand what happens when we turn on � as a
function of time �but keep it uniform in space�. To this end
we set ��=0 and j=0 �no currents in vacuum� and take the
divergence of Eq. �3� to obtain

� ·
�E

�t
+

	

4�2

��

�t
� · B = 0. �4�

We see that an electric field is generated in this process.
Integrating Eq. �4� over space and time, we find that this field
can be thought of as originating from a point electric charge
Q located at the origin with magnitude

Q = −
	

4�2�0�� = −
��

2�
e , �5�

where �� is the net change in � and we assumed that there
was no initial electrical charge bound to the monopole, as
should be the case for a charge-conjugation and CP invariant
theory17 with �=0. In a topological insulator ��=�, thus
one expects a magnetic monopole to bind fractional charge

Q = − e�1

2
+ n� . �6�

The integer n accounts for the possibility of binding extra
electrons, which can always occur—only the fractional part
of Q is nontrivial.

III. TOPOLOGICAL INSULATOR AS AN AXION MEDIUM

We now specify our model for a topological insulator and
show that it indeed possesses the axion term. In order to

minimize computational difficulties we consider a very
simple model, inspired by Ref. 21, with electrons hopping on
the cubic lattice with two orbitals per site, denoted as c and
d. The Hamiltonian H=HSO+Hcd, consists of a spin-
dependent part, with hopping between neighboring sites of
the lattice

HSO = i�
j,�

� j
†�z��� j+� + H.c., �7�

where � j = �cj↑ ,cj↓ ,dj↑ ,dj↓�T, j labels sites of the cubic lat-
tice, �� and �� are Pauli matrices in orbital and spin space,
respectively, �=x ,y ,z, and the spin-independent terms that
connect the two orbitals

Hcd = ��
j

� j
†�x� j − t�

	ij

�i

†�x� j + H.c. �8�

Although the model specified by Eqs. �7� and �8� probably
does not describe any real solid, it is physical in that it is
local in space and preserves time-reversal and inversion sym-
metries. We show below that for a range of parameters
� ,� , t� it represents a topological insulator and therefore can
be adiabatically deformed into any of the more realistic
models9–24 characterized by the same topological invariants.
Any physical property that depends only on the topological
invariants, such as the electrical charge bound to a mono-
pole, can thus be calculated in the present model and the
result will remain applicable to any topological insulator in
the same topological class. We note that a similar model was
used in Refs. 10, 16, and 25.

Our Hamiltonian has a simple representation in momen-
tum space, H=�k�k

†Hk�k with

Hk = − 2�
�

�z�� sin k� + �xmk �9�

and mk=�−2t��cos k�. The spectrum of excitations has two
doubly degenerate bands

Ek = � �42�sin2 kx + sin2 ky + sin2 kz� + mk
2 . �10�

In the limit � , t→0 the bands touch at eight nonequivalent
Dirac points located at ��=�nxnynz�

=��nx ,ny ,nz� with n�

=0,1. These �� also coincide with the eight time-reversal
invariant momenta9 �TRIM�. When � , t are small but non-
zero, the low-energy excitations of the system can be de-
scribed in terms of eight massive Dirac Hamiltonians

Hk
� = �

�

�z��v�
� k� + �xm� �11�

obtained by a straightforward expansion of Hk to linear or-
der in momentum in the vicinity of ��. Here v�

� �−2
�−1�n� are the Cartesian components of the Dirac velocities
at �� and m��m��

are the corresponding Dirac masses. The
Hamiltonians Hk

� show spectra

Ek
� = � �42k2 + m�

2. �12�

The system described by Hamiltonian �9� is inversion
symmetric and we can thus employ the method devised in
Ref. 9 to determine the topological class of its insulating
phases when the negative-energy bands are filled with elec-
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trons. This straightforward method requires computing the
eigenvalues of the parity operator at the eight TRIM for the
occupied bands. We find four distinct phases, depending on
parameters � and t, two of which are STI. The complete
results are listed in Table I.

According to general considerations14,15 the STI phases
should exhibit the axion term with �=�. We evaluate � for
our model using the non-Abelian-Berry connection Ai

	�

=−i		k��i��k
 and the formula14,15

� =
1

4�


BZ
d3k�ijk Tr�Ai� jAk +

2i

3
AiA jAk� , �13�

where ��k
 is an eigenstate of Hk, the trace extends over
occupied states, and �i�� /�ki. The integral indicated in Eq.
�13� is generally difficult to evaluate and numerical methods
must be used to obtain � for an arbitrary band structure. For
a model in which the band touching is described by Dirac
Hamiltonians, however, a simple analytical evaluation of Eq.
�13� is possible by noticing that in the limit of a small Dirac
mass the entire contribution to the integral comes from the
Dirac points. We show in the Appendix that each Dirac point
contributes

�� = −
�

2
sgn�vx

�vy
�vz

�m�� �14�

to the total �=���� mod 2�. Although Eq. �14� has been
derived for the case �m��� �� we expect it to be more gen-
erally valid for all TRI Hamiltonians that can be deformed
into the form of Eq. �9�. This is because the value of � in a
TRI insulator is quantized and can only change when a band
crossing closes the gap. As long as band crossings occur only
at �� points and are described by Dirac Hamiltonians, � will
be determined by Eq. �14�, even when �m�� is not small.

It is easy to see that Eq. �14� gives the anticipated result
for our model. Consider first the situation when ��6t�0
which according to Table I is a trivial insulator. In this case
all eight masses m� are positive. Since four of the products
vx

�vy
�vz

� are positive and four are negative Eq. �14� gives �
=0, as expected. Now suppose we tune � so that its value
drops below 6t. This reverses the sign of a single Dirac mass
at �= �0,0 ,0�. The corresponding �� also reverses sign and
we obtain �=�, as expected for a STI. For all other cases the

values of � are listed in Table I. These results confirm the
one-to-one correspondence between the Z2 invariant �0 and
the axion parameter � expressed by �=��0, as expected on
very general grounds.22

IV. CHARGE BOUND TO A MONOPOLE

We now consider a magnetic monopole in the interior of a
STI. We model this situation by the Hamiltonian H defined
by Eqs. �7� and �8� with a monopole positioned at the center
of a cubic unit cell. The magnetic field of the monopole
couples to both the electron charge and the electron spin
through the orbital and Zeeman couplings, respectively. The
form of the orbital coupling is dictated by gauge invariance
and is thus universal; in our lattice model it is implemented
by the Peierls substitution, which attaches factors ei�ij to all
hopping terms connecting sites i and j. Here �ij
= �2� /�0��i

jA ·dl and A is the magnetic vector potential. The
Zeeman coupling is of the form −g�BB ·S /� where �B
=e� /2mec is the Bohr magneton and S denotes the electron
spin. For free electrons g is close to 2 but in solids the ef-
fective g can be substantially larger. The Zeeman coupling
thus leads to an additional term in the Hamiltonian

HZ = − g�B
1

2�
j

B j · �� j
†�� j� , �15�

where B j is the magnetic field at site j of the lattice. This
term is nonuniversal and its importance will depend on the
ratio of g�B�B� to the other relevant energy scales in the
Hamiltonian set by , �, and t.

We solve the Hamiltonian H=HSO+Hcd+HZ in a cube
containing L3 sites by exact numerical diagonalization. The
monopole is placed inside the central unit cell �at the origin�
so that the magnetic field of the monopole is B
= ��0 /4�r2�r̂. We choose a gauge in which the system re-
tains the fourfold rotational symmetry around the z axis,26

A=−�0�1+cos ����, with �� ,�� the spherical angles. Ex-
ploiting this symmetry we are able to simulate system sizes
up to L=20, which requires diagonalizing a complex valued
Hermitian matrix of size 1

4 �4
203�=8000. In order to calcu-
late the charge density at half filling we require knowledge of
all the occupied eigenstates.

We diagonalize the Hamiltonian, once with the magnetic
monopole and once without, obtaining charge densities �1
and �0, respectively. The monopole-induced charge density
��=�0−�1 is plotted in Fig. 1�a�. To determine the total
charge bound to the monopole we calculate the excess accu-
mulated charge in a sphere of radius r centered on the mono-
pole, �Q�r�=��ri��r���ri�. We find �Fig. 1�b�� that it saturates
at −e /2 to within four significant digits, comparable to the
accuracy of our numerics. For g=0 we find two localized
zero modes, one at the monopole and one on the surface.
Fractional charge bound to the monopole can be understood
in this case by appealing to the standard arguments27,28 de-
veloped originally to describe charge fractionalization in
polyacetylene.29 Briefly, when a topological defect �such as a
domain wall in polyacetylene� produces a localized zero
mode inside the gap in a particle-hole symmetric system, one

TABLE I. Z2 indices ��0 ;�1�2�3� calculated according to Ref. 9
for our model insulator at half-filling and the corresponding values
of the axion parameter �. �0 is the important “strong” invariant
while �i=1,2,3 are the so called “weak” invariants �Refs. 7 and 8�
which do not play a role in the present study but we list them here
for completeness. It is assumed that  , t�0. WTI denotes a weak
topological insulator.

Parameters Z2 class Insulator type Axion �

����6t �0;000� Trivial 0

−6t���−2t �1;111� STI �

−2t���2t �0;111� WTI 0

2t���6t �1;000� STI �
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can show that the spectral weight of the state contains equal
contributions from the valence and the conduction bands.
Thus, the valence band shows a net deficit of half a state in
the vicinity of the defect. This translates into the defect car-
rying fractional charge �e /2, the sign depending on whether
the zero mode is empty or occupied.

Like in polyacetylene we find the saturation of charge to
be exponential �exp�−r /��, where ��1 /� and � is the bulk
gap. When g�0, the Zeeman coupling causes changes in the
charge distribution near the monopole but the total accumu-
lated charge remains quantized at −e /2. In this case there are
no exact zero modes in the spectrum and �Q�r� approaches
e /2 as a power law with the exponent close to −3 �Fig. 1�c��.

The power-law dependence can be understood as follows.
The Zeeman term acts as an additional time-reversal break-
ing field which modifies the value of axion � away from �
close to the monopole. This causes nonvanishing �� and
thus, according to Eq. �2�, additional contribution to the ef-
fective charge density. The simplest assumption, ���B2,
gives ����� ·B�r−7 and �Q�r−4, a power law but with
the exponent not quite in agreement with our numerical
simulation. On further reflection one realizes that in our
model �� cannot be proportional to B2 but rather must be
proportional to its gradients. This is because in the presence
of a uniform Zeeman term the system remains inversion
symmetric. Inversion symmetry dictates quantized value of
�=0,� even when T is explicitly broken.14,15 Thus, nonvan-
ishing �� requires spatially varying Zeeman field. The sim-
plest assumption satisfying these requirements is ����2B.
In the vicinity of the monopole one finds ����� ·B�r−6

and �Q�r−3 in agreement with our numerical results.
We note that the above considerations are based on the

effective axion action in Eq. �1� and apply on length scales
large compared to �. The power law tail in the fractional
charge distribution for g�0 appears on top of a short-length
scale structure with a roughly exponential profile that is con-
trolled by the properties of the microscopic Hamiltonian and
is thus nonuniversal. At the intermediate length scales the
interplay of the two contributions can give rise to interesting
structures such as the peak in �Q�r� at r�2.5 seen in Fig.
1�b� for g=10.

By the same method described above we have investi-
gated spin density induced by the monopole. We find that
there is no net spin 	S
 attached to the monopole. Thus, in
addition to charge fractionalization, a magnetic monopole
inserted in a STI constitutes an example of spin-charge sepa-
ration in three spatial dimensions. This is perhaps not sur-
prising in view of the fact that spin-orbit coupling present in
the Hamiltonian �7� breaks the SU�2� spin symmetry and, as
a result, electron spin is not a good quantum number in the
model describing our system.

V. PROPOSAL FOR EXPERIMENTAL REALIZATION

Although there is no known theoretical principle that pro-
hibits the existence of fundamental magnetic monopoles in
nature,26 none have been observed to date despite extensive
searches.30 This null observation has led to a consensus that
fundamental monopoles either do not exist for some hereto-
fore unknown reason or they are very rare in our part of the
universe. In either case the observed absence of fundamental
monopoles poses a challenge to the idea of experimental
verification of the Witten effect using a STI. At best, one
could conceive of a new scheme for possible detection of
magnetic monopoles using a STI in the role of a sensor if a
convenient way to detect the fractional charge could be
found.

A much more promising avenue for the verification of the
Witten effect is suggested by exploiting emergent instead of
fundamental monopoles. A classic example of such an emer-
gent behavior in a crystalline solid is the 2007 theoretical
prediction31 and the subsequent experimental
observation32–34 of monopoles in frustrated magnetic systems
called “spin ice,” realized in certain magnetic pyrochlore
compounds such as Dy2Ti2O7 or Ho2Ti2O7. Magnetic mono-
poles in these systems arise as elementary excitations above
the collective ground state of spins and the monopolelike
magnetic field configuration originates from the magnetic
moments of the constituent spins. In principle, the emergent
monopoles in the spin ice could be used to test the Witten
effect if a compound that is simultaneously a STI and a spin
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FIG. 1. �Color online� Charge density in our model TI on the cube-shaped lattice with 203 sites with a unit monopole at its center, with
parameters t=, �=4t, leading to a bulk gap �=4t. �a� Charge density �� of the three closest layers below the monopole, for g=0. �b� The
excess charge �Q�r� �in units of e� for different Zeeman coupling g. The knee feature seen at r=10 corresponds to the radius at which the
sphere used to calculate �Q�r� first touches the system boundary. �c� Log-log plot of �Qg−�Q0 showing the power-law approach �r−	 of the
accumulated charge to its assymptotic value of 1/2. The least-square fit yields exponents 	=2.85,3.04,2.79 for g=2,6 ,10, respectively. We
attribute the deviations of the numerically determined exponent 	 from the expected value of 3 to the finite-size effect.
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ice could be identified. Unfortunately no such material is
known at present although we note that STI behavior has
been theoretically predicted to occur in crystals with the
same pyrochlore structure23,24 that underlies the spin-ice be-
havior. It is thus possible that a suitable material will be
discovered in the future.

Here we focus on a different type of emergent magnetic
monopole that can arise in a thin-film STI placed in a uni-
form external electric field. The basic idea and the feasibility
of its experimental realization have been discussed in Ref.
19. Following that work we envision the simplest STI with
just one gapless Dirac state per surface and the chemical
potential initially tuned to the neutral point. When a strong
enough electric field is applied perpendicular to the plane of
the film the chemical potential undergoes a shift that is op-
posite in the two surfaces. This creates a small electron
Fermi surface in one surface and a small hole Fermi surface
in the other. The essence of the proposal19 lies in the obser-
vation that an arbitrarily weak Coulomb interaction between
the surface states produces an exciton condensate, which
may be viewed as a coherent fluid of electron-hole pairs
drawn from the opposite surfaces. Such an exciton conden-
sate is characterized by a complex scalar order parameter �,
which can fluctuate in space and time. In particular, �
=�0ei� can contain vortices—pointlike topological defects
with the phase � winding by �2� around a vortex. It has
been pointed out in Ref. 19 that to electrons in a STI such a
vortex is indistinguishable from a “planar monopole,” i.e., a
monopole with magnetic field radiating in the plane of the
surface.

A planar monopole can be viewed as an adiabatic defor-
mation of an ordinary monopole achieved by flattening the
field lines in a cylindrically symmetric fashion. One expects
that the total charge bound to the monopole via the Witten
effect should be insensitive to such an adiabatic deformation
and therefore a vortex in the exciton condensate should bind
fractional charge �e /2. This indeed has been argued to hap-
pen in Ref. 19 based on the Dirac equation describing the
low-energy physics of the surface states in the presence of
the exciton condensate. Here, taking a more general point of
view, we establish the existence of the fractional charge in
such a condensate by studying a planar monopole embedded
inside a STI. Our calculation below does not rely on the
low-energy approximation for the surface states and is insen-
sitive to the detailed microscopic structure of the condensate.
Rather, it exploits only the most fundamental property of the
STI given by its nontrivial axion response.

In general, the fractional charge is expected to be robust
against weak disorder that does not break TRI. Such a disor-
der will be present in a real sample and we model it here by
adding a term

HD = �
j

� j
+� j

†� j + �
j

� j
−� j

†�z� j �16�

to the Hamiltonian. The first term represents a parity-
preserving on-site disorder �independent of the orbital� while
the second term is a parity breaking disorder.

As before we solve the Hamiltonian H=HSO+Hcd+HD, in
a cube containing L3 sites, by exact numerical diagonaliza-

tion. The planar monopole projects an effective magnetic
field Beff= ��0 /2�r���z�r̂ �in cylindrical coordinates� and the
vector potential can be chosen as A= ��0 /2�����z�ẑ. The
effective field does not couple to electron spin19 so there is
no Zeeman term in this case. The disorder coefficients � j

�

are chosen from a Gaussian distribution with standard devia-
tion �. Note that the disorder breaks the fourfold rotational
symmetry of the system so we cannot exploit this symmetry
in this case to efficiently diagonalize the Hamiltonian. Con-
sequently we are limited to system sizes up to L=14. For
weak disorder ��� the charge bound to the planar mono-
pole remains −e /2 �see Fig. 2� and for strong disorder �
�� the charge bound is zero. Remarkably, even for fairly
significant disorder �such that it generates charge density
fluctuations comparable to the charge density induced by the
monopole� the difference in charge density �� shown in Fig.
2�f� is only weakly affected.

In the framework of the current proposal the key ingredi-
ent required to produce a monopolelike configuration is the
exciton condensate. As explained in Ref. 19 it is difficult to
reliably estimate the critical temperature TEC for the forma-
tion of the exciton condensate, but under optimal conditions
it should be higher than it is in bilayer graphene, where the
occurrence of this effect is hotly debated. Once the exciton
condensate is formed, vortices can be nucleated by applying
an in-plane magnetic field. Since the exciton condensate is
itself insulating, the main conduction channel in this situa-
tion will be through vortices, each carrying −e /2 charge.
Fractional charge of the carriers then can be detected using
established techniques.35,36

VI. OUTLOOK AND OPEN QUESTIONS

Predicted more than 30 years ago in the context of high-
energy physics, but never before observed in a real or nu-
merical experiment, the Witten effect is realized in a strong
topological insulator. A unit magnetic monopole inserted in a
model STI binds electric charge −e /2 in accordance with the
prediction17 and furnishes a rare example of charge fraction-
alization and spin-charge separation in three spatial dimen-
sions. In the special case when the underlying system pos-
sesses particle-hole symmetry and when the Zeeman term in
Eq. �15� can be neglected, the appearance of fractional
charge follows from the same “zero-mode” arguments that
underlie charge fractionalization in a one-dimensional sys-
tem of fermions coupled to a scalar field with a soliton
profile27,28 as realized in dimerized polyacetylene.29 In the
more general case when the Zeeman term or weak disorder
are present, there exist no exact zero modes in the spectrum
of electrons yet the fractional charge remains precisely quan-
tized. This reflects the more subtle topological order that
underlies the axion response of a STI, which is robust against
any weak perturbation that respects time-reversal
symmetry.7,8,14,15

An interesting open question is the fate of the Witten ef-
fect in the presence of magnetic disorder. Experimentally,
this can be implemented by adding a small concentration of
magnetic ions �such as Fe or Mn� into a topological insulator.
Although at the microscopic level � is no longer quantized in

WITTEN EFFECT IN A CRYSTALLINE TOPOLOGICAL… PHYSICAL REVIEW B 82, 035105 �2010�

035105-5



the presence of T-breaking perturbations, we expect its effec-
tive value, relevant to the physics at long length scales, to
remain pinned at � as long as the magnetic moments stay
disordered. This is because the net magnetic moment in a
macroscopic region containing many impurities will effec-
tively vanish. Qualitatively, this suggests that the Witten ef-
fect may survive inclusion of a moderate concentration of
magnetic dopants with randomly oriented moments. At low
temperatures moments may order ferromagnetically.37 In this
case both T and the inversion symmetry are broken �the latter
due to the random position of magnetic dopants� and the
effective � can acquire an arbitrary value. In this situation we
expect a monopole to still bind fractional charge according to
Eq. �6� but we leave a detailed study of this case to future
investigation.

Can the Witten effect be observed experimentally in the
near future? We believe that the answer is affirmative. One
essential ingredient, the axion medium, is now widely avail-
able in any of the recently discovered STIs.11–13 If an emer-
gent monopole can be realized, exploiting the proposed ex-
citon condensate,19 the spin-ice-type physics,31–34 or by some
other means, then the experimental challenge is reduced to
designing a suitable method for the detection of fractional
charge bound to the monopole. The fractional charge of el-
ementary excitations in fractional quantum-Hall fluids has

been previously detected35,36 and it should be possible to
adapt these methods to topological insulators. In this way,
studies of crystalline quantum matter with nontrivial topo-
logical properties could help settle one of the enduring chal-
lenges of fundamental physics and provide insights into the
behavior of electrons placed in unusual situations.
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APPENDIX: EVALUATION OF �

The feature that makes our model Hamiltonian �9� easy to
analyze, is its matrix structure in the combined orbital/spin
space, which consists of four anticommuting 4
4 matrices.
Such matrices are by convention denoted ��, �=0,1 ,2 ,3
and form a representation of the Clifford algebra defined by
the anticommutation relation ��� ,���=2���. In terms of
these matrices Eq. �9� can be written as

FIG. 2. �Color online� A cubic sample of a TI including disorder with a planar unit monopole at its center, size L=14 and parameters as
in Fig. 1. In all cases shown we use the same disorder realization but vary its overall strength parametrized by �. Panels �a� and �b� show
charge density 2−�1 for the layer just below the planar monopole for weak disorder �=0.05� and �c� larger disorder �=0.20�. Panels �e�
and �f� show the difference in charge density ��=�0−�1 for � /�=0.05,0.20, respectively, for the same layer. �d� The excess charge �Q�r�
�in units of e� for different values of disorder strength �. The inset shows a closeup of the saturation. At this scale a small deviation from
the expected asymptotic value 1/2 that increases with the disorder strength becomes visible. We attribute this deviation to the finite-size effect
in our numerical calculation. This identification is supported by the fact that the deviations grow more pronounced for smaller system sizes
and close to the surface. Also, it is consistent with the notion that the bound charge is localized on the length scale ��1 /� which increases
as the disorder reduces the spectral gap.
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Hk = �
�

��d��k� �A1�

with d��k�= �mk ,−2 sin kx ,−2 sin ky ,−2 sin kz�. The ac-
tual form of our � matrices is apparent by comparing Eq.
�A1� to Eq. �9� but our result for � is independent of any
particular representation, as long as the matrices satisfy the
requisite commutation relation. In fact in the subsequent cal-
culations it will be advantageous to use a different represen-
tation of the Clifford algebra, obtained by a uniform rotation
by angle � /2 around the �1 axis: we use �0=�1 � 1 and �i
=�2 � �i, i=1,2 ,3.

In this representation the two normalized negative-energy
eigenstates of Hk can be written as

�1 = �− d1 + id2,d3 − id0,0,iE�T/�2E ,

�2 = �d3 + id0,d1 + id2,− iE,0�T/�2E , �A2�

where E= ���d�
2 �1/2, and from now on we suppress the mo-

mentum dependence of all quantities. The eigenstates �1 and
�2 above are degenerate and we are thus free to choose any
�orthogonal� linear combination of these. Such a change in
basis corresponds to a gauge transformation on A. When
evaluating � using Eq. �13� one must keep in mind that the
integrand is not gauge invariant while the integral taken over
the BZ is gauge invariant modulo 4�2. This property reflects
the Z2 nature of the topological invariant �0 that underlies the
physics of a STI.

Using the eigenstates given in Eq. �A2� we find the Berry
connection to be of the form Ai=ni ·�, where � is a vector

of Pauli matrices and the components of vector ni read

n1i = D0�iD1 − D1�iD0 + D3�iD2 − D2�iD3,

n2i = D3�iD1 − D1�iD3 + D2�iD0 − D0�iD2,

n3i = D2�iD1 − D1�iD2 + D0�iD3 − D3�iD0

with D�=d� /�2E. After substituting these into Eq. �13� a
tedious but ultimately straightforward calculation leads to the
expression

� = −
1

2�


BZ
d3k�	���d	�1d��2d��3d�

E4 . �A3�

Using the values of d� for our model given below Eq. �A1�,
one obtains a complicated integrand in terms of trigonomet-
ric functions. Although the value of the integral is guaranteed
to be either 0 or � in practice it is not obvious how to
perform the required three-dimensional integration. How-
ever, it is clear from the structure of the integrand in Eq.
�A3� that in the limit �mk�� contributions to the integral
come only from the vicinity of the eight Dirac points. We
evaluate these eight contributions separately by linearizing
d’s as d�

� �k�= �m� ,vx
�kx ,vy

�ky ,vz
�kz� and obtain

�� = −
1

2�
 d3k

m�vx
�vy

�vz
�

�42k2 + m�
2�2 . �A4�

An elementary evaluation then yields the result quoted in Eq.
�14�.
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